
Unity fundamental concepts



Scenes

• Scenes contain the environments and menus of your game. Think of each 
unique Scene file as a unique level. In each Scene, you place your environments, 
obstacles, and decorations, essentially designing and building your game in pieces.

• When you create a new Unity project, your scene view displays a new Scene.

• The Scene is empty except for a Camera (called Main Camera) and a Light 
(called Directional Light).

• It is possible to have multiple Scenes open for editing at one time.

• You can load a scene at runtime using SceneManager.

• You can load a scene asynchronously in the background using LoadSceneAsync function

https://docs.unity3d.com/ScriptReference/SceneManagement.SceneManager.html


Game Objects

• GameObjects are the fundamental objects in Unity that represent 
characters, props and scenery. They do not accomplish much in 
themselves but they act as containers for Components
, which implement the real functionality.

• A GameObject always has a Transform component attached (to represent 
position and orientation) and it is not possible to remove this. The other 
components that give the object its functionality can be added from the 
editor’s Component menu or from a script. There are also many useful 
pre-constructed objects (primitive shapes, Cameras, etc).

https://docs.unity3d.com/Manual/class-Transform.html


Scripting

• Unity has its own built-in behavior class called MonoBehaviour.

• MonoBehaviour is the base class from which every Unity script 
derives.

• When you use C#, you must explicitly derive from MonoBehaviour.

• To write the code, Unity offers a Visual Studio 2017 community 
installation.

• Editing and saving scripts in Visual Studio (PC) or MonoDevelop
(macOS) will immediately update the script in Unity.



Components

• Game object can contain multiple components.

• The Transform Component is added by default for any 
game object.

• This component defines the GameObject’s position, 
rotation, and scale.

• You can add Components to the selected GameObject
through the Components menu.

• There are two main types of 
Properties: Values and References in the component.



Prefabs

• Unity’s Prefab system allows you to create, configure, and store a GameObject complete 
with all its components, property values, and child GameObjects as a reusable Asset.

• Any edits that you make to a Prefab Asset are automatically reflected in the instances of 
that Prefab.

• You can nest Prefabs inside other Prefabs to create complex hierachies of objects that are 
easy to edit at multiple levels.

• You should also use Prefabs when you want to instantiate GameObjects at runtime that 
did not exist in your Scene at the start.

https://docs.unity3d.com/Manual/NestedPrefabs.html
https://docs.unity3d.com/Manual/InstantiatingPrefabs.html


Layers
• Layers primarily used to restrict operations such as 

raycasting or rendering.

• They are only applied to the relevant groups of game 
objects.

• The first eight Builtin Layers are defaults used by Unity, 
so you cannot edit them. However, you can 
customise User Layers from 8 to 31.

• Using layers you can cast rays and ignore colliders in 
specific layers.

• You can use Layers to ignore physics collision between 
certain objects.

• Layers are most commonly used by Cameras to render 
only a part of the scene, and by Lights to illuminate only 
parts of the scene.



Tags

• A Tag is a reference word which you can assign to one or 
more GameObjects.

• For example, you might define “Player” Tags for player-controlled 
characters and an “Enemy” Tag for non-player-controlled characters.

• Tags help you identify GameObjects for scripting purposes.

• You can use the GameObject.FindWithTag() function to find a 
GameObject by setting it to look for any object that contains the Tag 
you want.

https://docs.unity3d.com/ScriptReference/GameObject.FindWithTag.html


Coroutines

• A coroutine is like a function that has the ability 
to pause execution and return control to Unity 
but then to continue where it left off on the 
following frame.

• It is essentially a function declared with a return 
type of IEnumerator and with the yield return 
statement included somewhere in the body.

• A coroutine is resumed on the frame after it 
yields but it is also possible to introduce a time 
delay using WaitForSeconds.

• This would greatly reduce the number of checks 
carried out without any noticeable effect on 
gameplay.

https://docs.unity3d.com/ScriptReference/WaitForSeconds.html


Player Input Settings
• Use the Input settings (top Menu: Edit > Project 

Settings, then select the Input category) 
to define the input axes and game actions for 
your Project.

• All the axes that you set up in the Input settings 
serve two purposes:

• 1- They allow you to reference your inputs by 
axis name in scripting.

• 2- They allow the players of your game to 
customize the controls to their liking.

• It is best to write your scripts making use of 
axes instead of individual buttons, as the player 
may want to customize the buttons for your 
game.



Transforms

• The Transform is used to store a GameObject’s
position, rotation, scale and parenting state and 
is thus very important.

• Transforms are manipulated in 3D space in the 
X, Y, and Z axes or in 2D space in just X and Y.

• When a GameObject is a Parent of another 
GameObject, the Child GameObject will move, 
rotate, and scale exactly as its Parent does.

• Non-uniform scaling is when the Scale in a 
Transform has different values for x, y, and z.

• The physics engine assumes that one unit in 
world space corresponds to one metre. If an 
object is very large.


